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Introduction

Autonomous hyperbolic attractors were introduced: by 
Smale and Anosov, Alekseev, Williams, Sinai, Ruelle, and other 
Neuhausen, about 70 years ago. Traditional examples of uniformly 
hyperbolic attractors are discrete-time geometric models such as 
the Smale - Williams attractor or the Plykin attractor presented in 
Figure 1 [1]. Initially, they were expected to be adequate for many 
real-world situations of chaotic behavior, such as hydrodynamic 
turbulence, etc. As time passed, it became clear that the early 
hyperbolic theory was too narrow to include most chaotic systems 
of interest to applications. So, the efforts of mathematicians were 
redirected to generalizations of the theory corresponding to 
wider classes of systems. For example, we developed the notion 
of nonuniform hyperbolic attractors, partially hyperbolic systems, 
quasihyperbolicity or singular hyperbolic attractor, quasi-attractor, 
etc. Uniformly hyperbolic attractor is presented in Figure 2, is an 
attractive object in the phase space of a dissipative dynamic system 
consisting exclusively of saddle trajectories.

Figure 1: The evolution of a hyperbolic strange attractor of 
Plykin-like attractor of Smale - Williams.

Figure 2: Stable (Λ < 0) (yellow) and unstable (Λ > 0) (blue) 
manifolds represent the same dimension for all trajectories 
on a strange attractor, (red line) a small neighborhood of 
unstable equilibrium (Λ ≤ 0).

Their stable and unstable manifolds have the same dimension 
for all trajectories on the attractor; they should not touch; only 
intersections with non-zero angles are allowed. The hyperbolic 
nature of the attractors can be verified using the cone criterion. 
The Figure 3 below shows this for a discrete time system (iterated 
map). Cones of expanding and compressing infinitesimal perturba-
tion vectors must exist at each point of the region containing the 
attractor, which smoothly depends on the position. The image of 
the expanding cone shall be placed inside the expanding cone at 
the point of the image, and the prototype of the connecting cone 
shall be placed inside the dosing cone at the point of Providence. 
For flows, the same considerations apply in terms of the Poan-
care map. Geometric constructions of hyperbolic attractors of the  
Smale-Williams Attractor. The mathematical theory of chaos, based  
on a strict axiomatic Foundation, deals with strange attractors of 
hyperbolic type Figure 4. In such an attractor, all orbits belonging 
to it in the phase space of the saddle system, with stable and unsta-
ble varieties (invariant sets composed of trajectories approaching 
the original in forward or reverse time) intersect transversally, i.e. 
without touching.
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Figure 3: The cone criterion for the system with discrete 
time (the cones of the expanding and compressing of 
infinitesimal perturbation vectors, the iterated map).

Figure 4: Evolution of a strange hyperbolic attractor.

Unfortunately, known physical systems, such as simple chaos 
generators, nonlinear oscillators with periodic action and others, do 
not belong to the class of systems with hyperbolic attractors. Chaos 
in them is usually associated with the so-called quasi-tractor, which, 
along with chaotic trajectories includes stable orbits of a large 
period (not distinguishable in solving equations on the computer 
because of the narrowness of the regions of attraction). Hyperbolic 
strange attractors are robust (structurally stable). This means the 
insensitivity of the nature of movements and the relative position 
of trajectories in the phase space with respect to the variation of 
the equations of the system. In contrast to the hyperbolic attractor, 
quasi-attractors are characterized by a sensitive dependence of the 
dynamic’s details on the parameters. This is obviously undesirable 
for potential applications of chaos, such as communication systems, 
signal masking, etc. Thus, from both a fundamental and applied 
point of view, it is interesting to implement hyperbolic chaos in 
physical systems.

 In textbooks and monographs on nonlinear dynamics, examples 
of hyperbolic attractors are presented by abstract constructions. 
For example, the Smale-Williams attractor is constructed to map 
a three-dimensional space into itself defined by the following 
procedure. Consider an area in the form of a torus, stretch it in 
length, fold it in half and enclose it in the original torus, as shown 
in the figure. Each next iteration doubles the number of” turns”. An 
object that is obtained within many iterations is called the Smale – 
Williams solenoid. Its transverse structure has the form of a Cantor 
set. If we introduce the angular coordinate of the depicting point 
q, then on successive iterations it obviously obeys the Bernoulli 
map qn+1={2qn}. In the remaining two directions, the phase volume 
element undergoes compression. Therefore, a system of coupled 
non - autonomous generators seems to be a suitable candidate 
from the point of view of the implementation of the Smale-Williams 

attractor. Consider a one-dimensional map: xn+1={2xn}, where the 
braces represent the fractional part of the number. Its graph and 
diagram illustrating the dynamics over several iterations is shown 
in Figure 5. It is convenient to represent the variable x in the binary 
notation, with the digit 0 at the first position after the dividing point 
corresponds to the location of the representing point in the left, and 
1 - in the right half of the unit interval. Let, for example, one step of 
evolution in time is that the sequence of zeros and ones is shifted to 
the left by one position, and the figure that appears on the left side 
of the dividing point is discarded, and so on. This transformation of 
the binary sequence, consisting in the shift of all characters to one 
position, called the Bernoulli shift.

Figure 5: The one-dimensional map xn+1={2xn}, where 
the braces denote the fractional part of the number, the 
graph and the diagram illustrate the dynamics over 
several iterations.

Figure 6: Non-Autonomous oscillatory system based on 
two oscillators with characteristic frequencies ω0 and 2ω0.

Let’s set the initial state as a random sequence of numbers, 
for example, obtained by tossing a coin, according to the rule 
eagle – 0, tails – 1: x0 = 0.0101101... Then, during iterations, the 
depicting point will visit the left or right half of the unit interval 
exactly following our random sequence, thus causing chaos. The 
small perturbation of the initial condition is doubled in one step of 
iterations. Therefore, the Lyapunov exponent for this map is ln 2 = 
0.693. How to implement dynamics corresponding to the Bernoulli 
map in a physical system. Let us turn to the flowchart shown in 
Figure 6. This is a non-Autonomous oscillatory system built based 
on two oscillators with characteristic frequencies ω0 and 2ω0. The 
parameter controlling the excitation of one and the other oscillator 
slowly changes in time in the counterphase with a period T, which 
is an integer number of periods of the fundamental frequency: T = 
2πN/ω0. Thus, one or the other generator is excited in turn. The 
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influence of the first generator on the second one is made through a 
nonlinear quadratic element.

The generated second harmonic serves as a seed when the 
ssecond generator is excited. In turn, the second generator acts on 
the first through a nonlinear element, which mixes the incoming 
signal and the auxiliary reference signal at a frequency ω0. In 
this case, a component appears at the difference frequency. It 
resonates with the first generator and serves as a seed when it 
starts generating. Both generators, as it were, in turn transmit 
excitation to one another. Let us explain why the scheme functions 
as a generator of chaos. Suppose that at the stage of generation of 
the first oscillator oscillations have some phase φ. The signal at the 
output of the coupling element cosntains a second harmonic, and 
its phase 2φ is transmitted to the second oscillator when it starts to 
generate. Due to the mixing with the reference signal on the second 
coupling element, the doubled phase is transmitted to the initial 
frequency range, so that when the first oscillator is excited, at the 
next stage of generation, it will receive a phase 2φ. At successive 
excitation stages of the first generator for its phase normalized to 
2π, Θ = φ/2π, the Bernoulli map will be valid: Θn+1= {2Θ n}. To 
observe the described mechanism numerically, we consider a 
system of equations (1), two Van - Der - Pol oscillators with variable 
coefficients: 
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x A t T x x x y t
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 For Figure 7 the time dependence of the variables x and y in 
this system, performing a chaotic motion in the relay transmission 
of excitation from one oscillator to another, is shown. The graph is 
based on the results of the numerical solution of the equations at 
ω0 = 2π, T = 10, A = 3, ε = 0.5.

Figure 7: The time dependence of the variables x and y 
in this system, performing a chaotic motion in the relay 
transmission of excitation from one oscillator to another at 
ω0 = 2π, T = 10, A = 3, ε= 0.5, is shown.

Figure 8: The time dependence of the variables x and y 
in this system, performing a chaotic motion in the relay 
transmission of excitation from one oscillator to another at 
ω0 = 2π, T = 6, A = 5, ε= 0.5, is shown.

For Figure 8 the time dependence of the variables x and y in 
this system, performing a chaotic motion in the relay transmission 

of excitation from one oscillator to another, is shown. The graph is 
based on the results of the numerical solution of the equations at 
ω0 = 2π, T = 6, A = 5, ε = 0.5. Chaos manifests itself in the random 
walk of the highs and lows of filling relative to the envelope. Below 
is a diagram of the empirical mapping for the phase of the first 
oscillator in the middle of the excitation stages. On chart Figure 9, 
the points (Θn, Θn+1) are postponed for a sufficiently large number 
of periods T. So, we obtain a map that, despite the presence of 
some deformations, is topologically equivalent to the Bernoulli 
map Θn+1 = {2Θn}. In fact, if we vary the initial phase so that the 
depicting point once bypassed the full circle, the point-image will 
make a two-time circumference. This is expressed in the fact that 
the graph has two branches, located in the same way as in the first 
figure at the beginning of this page. The correspondence with the 
Bernoulli’s classical map becomes better when the ratio of periods 
increases N. The last Figure 10 shows a graph of the dependence of 
the higher exponent of the Lyapunov (Λ), for a system of coupled 
nonautonomous Van - Der - Pol oscillators on the amplitude of the 
slow modulation a, with the period taken as a unit of time T.

Figure 9: Pending points (Θn, Θn+1) for a sufficiently large 
number of periods T.

Figure 10: A graph of the dependence of the higher 
Lyapunov exponent (Λ) for a system of coupled 
nonautonomous Van - der - Pol oscillators on the 
amplitude of the slow modulation A for fixed other 
parameters is presented.

As you can see, in a wide range of parameter Lyapunov exponent 
remains almost constant and approximately equal to ln2 = 0.693, 
corresponding to the Bernoulli map. At small A the correspondence 
disappears - the Lyapunov exponent becomes noticeably smaller. 
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Arrhythmias
Cardiovascular diseases (CVD) are responsible for 4 million 

deaths in Europe each year and cause a decline in life expectancy 
of 30%. The main group of CVD is associated with disorders of 
normal heart rhythm (cardiac arrhythmias). The heart rate is not 
a strictly periodic process, since the heart muscle is not an isolated 
system. In a healthy state, the heart always responds to physical 
activity, respiratory rhythm, etc. [2]. Moreover, periodic excitation 
of sthe heart indicates pathology, and strictly regular contractions 
of the heart can lead to its sudden stop and, therefore, to the death 
of the body (see, for example, [3-5]). However, arrhythmias are 
a completely different kind of aperiodic behavior of the heart. In 
this case, the heart muscle is no longer amenable to simple control 
with the help of incoming impulses. Arrhythmia - is any heart 
rhythm that differs from the normal sinus rhythm by changes in the 
frequency and regularity of the source of excitation of the heart, as 
well as by a violation of the conduction of pulses. 

From this point of view, arrhythmias can be divided into three 
large groups. One of them-arrhythmias due to violation of the 
passage of impulses. For example, atrioventricular blockade of the 
heart may be characterized by abnormal coordination between 
the atrial and ventricular rhythms, leading to an extension of the 
interval between atrial and ventricular contractions (AV-blockade 
of 1 degree), an increase in the number of atrial contractions 
compared to the number of ventricular contractions due to the 
blocked conduct of some of the atrial beats (AV-blockade of 2 degree) 
or a complete lack of coordination between atrial and ventricular 
rhythms (AV-blockade of 3 degree). Such an AV blockade, as the 
rhythms of Venkebah, due to the increase in the interval between 
contractions of the Atria and ventricles, leading to the loss of one of 
the ventricular beats. Another group is arrhythmias that occur as a 
result of impaired impulse formation. 

sFor example, irregular excitation of Central cells of ACS leads 
to such types of disorders as sinus bradycardia (low heart rate), 

while the frequency of excitations and contractions of the heart can 
be determined by the activity of the second or third order rhythm 
drivers, and tachycardia (high rate of contractions) associated with 
the generation of heart rate by parasitic high-frequency sources. 
Arrhythmia due to competition ACS and spurious (ectopic), the 
leading centre emerged from a group of contractile cardiomyocytes, 
for the reference rate, is called Parasitology. The third group of 
abnormalities – arrhythmia due to combination of violations. 
All types of cardiac arrhythmias can also occur in the absence of 
anatomically expressed changes in the myocardium in practically 
healthy people, and in this case, they are called functional, unlike 
pathological disorders that occur with organic changes in the heart 
(see [6]). The theory of dynamic systems describes many processes 
inherent in active media, including some types of arrhythmias [7]. 
Since arrhythmias are caused by certain disorders in the heart 
muscle and, therefore, are pathological conditions, the modeling of 
such systems is of great practical interest and can bring closer to 
the solution of the question of the possibility of controlling their 
behavior through external influences. This, in turn, allows us to 
come close to the problem of soft withdrawal of active systems from 
the state of developed space–time chaos characterizing some types 
of pathologies [8-10]. 

A Current Model Based on an Autonomous Dynamic 
System with a Hyperbolic Attractor of the Smale-
Williams type

For the first time an electronic device is implemented Figure 
11, which is an Autonomous dynamic system with a hyperbolic at-
tractor of the Smale – Williams type. The experimental study of the 
laboratory model of the hyperbolic chaos generator is carried out 
and the correspondence of the observed dynamics to the results of 
numerical calculations and circuit simulation in the software en-
vironment Multisim (together with lab. SF-6) Figure 12 [11]. For 
Figure 11 the scheme of the analog device which dynamics is de-
scribed by equations is shown: 

Figure 11: Scheme of the device, the dynamics of which is described by a system of equations (1) with coefficients and 
parameters MS, Dynamic variables x, y, z, v corresponds to the voltages on capacitors C1, C2, C3, C4, measured in decivolts.
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Figure 12: Experimental study of the laboratory model of the hyperbolic chaos generator and demonstrated compliance of the 
observed dynamics with the results of numerical calculations and circuit simulation in the Multisim software environment.
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Each of the four dynamic variables x, y, u, v is associated with 
a fragment of the circuit, which is an integrator based on the 
operational amplifier (respectively, U1, U2, U3, U4), capacitance (C1, 
C2, C3, C4) and resistance (R13, R14, R16, R17). The actual values 
of x, y, u, v correspond to the voltages on capacitors C1, C2, C3 and 
C4, respectively. Constant with the dimension of time is defined in 
terms of capacitance and resistance, and if specified in the diagram 
the values is milliseconds Figure13. For the presented scheme, the 
coupling coefficients are. The system (2) is closed and Autonomous. 
Add to the system the external periodic action f = Asinωt, and the 
resulting system becomes non-Autonomous (3). 

Figure 13: Photos from the oscilloscope screen of the hyperbolic attractor portrait are presented: time dependences (x(t), y(t), 
u(t), v(t)) at the top, phase portraits ((x,y), (x,v) and Fourier spectra (x, u) at the bottom.
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 Lyapunov exponents (λ (a, ω)) of equation (3) are presented 
in Figure14.

Resume
In Figure 14-18, various variants of system behavior (3), 

which can be used in the presentation of various heart failure, 
are considered. In Figures 19-20, presents real ECG data that can 
be used to study and predict the behavior of heart failure current 
models. Based on classical models of Duffing and Lorentz [1,11,12], 
current models are used to represent various behaviors of heart 
failure.

Figure 14: Lyapunov exponents (λ (a, ω)) of the equation (3).

Figure 15: A portrait of a hyperbolic attractor at A = 0 is presented: above the time dependence (x(t)) and phase portraits (x, 
ẋ), (x, y) and (x, v), below the time dependence (x(t)) and phase portraits ((x, y), (xn+1, xn), (xn+1 - xn, xn+1 + xn)) and Fourier (x) 
spectrum.

Figure 16: A portrait of a hyperbolic attractor is presented for A = 1, ω = π: above the time dependence (x(t)) and phase portraits 
(x, ẋ), (x, y) and (x, v), below the time dependence (x(t)) and phase portraits ((x, y), (xn+1, xn), (xn+1 - xn, xn+1 + xn)) and Fourier 
(x) spectrum.
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Figure 17: A portrait of a hyperbolic attractor is presented for A = 2, ω = π: above the time dependence (x(t)) and phase portraits 
(x, ẋ), (x, y) and (x, v), below the time dependence (x(t)) and phase portraits ((x, y), (xn+1, xn), (xn+1 - xn, xn+1 + xn)) and Fourier (x) 
spectrum.

Figure 18: A portrait of a hyperbolic attractor is presented for A = 4, ω = π: above the time dependence (x(t)) and phase portraits 
(x, ẋ), (x, y) and (x, v), below the time dependence (x(t)) and phase portraits ((x, y), (xn+1, xn), (xn+1 - xn, xn+1 + xn)) and Fourier (x) 
spectrum.

Figure 19: ECG Belyakin S.T. conducted during a medical examination of the clinic MSU them. M. V. Lomonosov. 17.08.2017.
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Figure 20: ECG 12-introductory, 24-year-old black female patient with sickle cell anemia, renal failure, and hyperparathyroidism. 
The level of calcium in the blood serum of the patient was 7 mg / DL, and potassium level of 6.5mEq / L. The ECG shows 
prolongation of the ST segment and the QTU interval (given in V5 and V6). And hypokalemia and hypomagnesemia, expressed 
by lengthening of QTU and alternative QTU (indicated by arrows); B – C – D are represented by rhythmic stripes of the same 
patient, showing tachycardia – (dependent QTU) and alternative tachycardia indications are indicated in [12].
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